From the hierarchy diagram, they all implement List interface. They are very similar to use. Their main difference is their implementation which causes different performance for different operations.
ArrayList is a better choice if your program is thread-safe. Vector and ArrayList require more space as more elements are added. Vector each time doubles its array size, while ArrayList grow 50% of its size each time. LinkedList, however, also implements Queue interface which adds more methods than ArrayList and Vector, such as offer(), peek(), poll(), etc.
Note: The default initial capacity of an ArrayList is pretty small (maybe 10 elements). It is a good habit to construct the ArrayList with a higher initial capacity. This can avoid the resizing cost.
ArrayList<Integer> al = new ArrayList<Integer>();
al.add(3);
al.add(2);
al.add(1);
al.add(4);
al.add(5);
al.add(6);
al.add(6);
Iterator<Integer> iter1 = al.iterator();
while(iter1.hasNext()){
System.out.println(iter1.next());
}
LinkedList<Integer> ll = new LinkedList<Integer>();
ll.add(3);
ll.add(2);
ll.add(1);
ll.add(4);
ll.add(5);
ll.add(6);
ll.add(6);
Iterator<Integer> iter2 = ll.iterator();
while(iter2.hasNext()){
System.out.println(iter2.next());
}
As shown in the examples above, they are similar to use. The real difference is their underlying implementation and their operation complexity.
Vector is almost identical to ArrayList, and the difference is that Vector is synchronized. Because of this, it has an overhead than ArrayList. Normally, most Java programmers use ArrayList instead of Vector because they can synchronize explicitly by themselves.
The time complexity comparison is as follows:
Leave a Comment